Multilinear class-specific discriminant analysis
نویسندگان
چکیده
There has been a great effort to transfer linear discriminant techniques that operate on vector data to high-order data, generally referred to as Multilinear Discriminant Analysis (MDA) techniques. Many existing works focus on maximizing the inter-class variances to intra-class variances defined on tensor data representations. However, there has not been any attempt to employ class-specific discrimination criteria for the tensor data. In this paper, we propose a multilinear subspace learning technique suitable for applications requiring class-specific tensor models. The method maximizes the discrimination of each individual class in the feature space while retains the spatial structure of the input. We evaluate the efficiency of the proposed method on two problems, i.e. facial image analysis and stock price prediction based on limit order book data.
منابع مشابه
A Multifactor Extension of Linear Discriminant Analysis for Face Recognition under Varying Pose and Illumination
Linear Discriminant Analysis (LDA) and Multilinear Principal Component Analysis (MPCA) are leading subspace methods for achieving dimension reduction based on supervised learning. Both LDA and MPCA use class labels of data samples to calculate subspaces onto which these samples are projected. Furthermore, both methods have been successfully applied to face recognition. Although LDA and MPCA sha...
متن کاملA Report on Multilinear PCA Plus Multilinear LDA to Deal with Tensorial Data: Visual Classification as An Example
In practical applications, we often have to deal with high order data, such as a grayscale image and a video sequence are intrinsically 2nd-order tensor and 3rd-order tensor, respectively. For doing clustering or classification of these high order data, it is a conventional way to vectorize these data before hand, as PCA or FDA does, which often induce the curse of dimensionality problem. For t...
متن کاملA Taxonomy of Emerging Multilinear Discriminant Analysis Solutions for Biometric Signal Recognition
Biometric signals are mostly multidimensional objects, known as tensors. Recently, there has been a growing interest in multilinear discriminant analysis (MLDA) solutions operating directly on these tensorial data. However, the relationships among these algorithms and their connections to linear (vector-based) algorithms are not clear, and in-depth understanding is needed for further developmen...
متن کاملMultilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation
In this paper a novel efficient method for representation of facial action units by encoding an image sequence as a fourth-order tensor is presented. The multilinear tensor-based extension of the biased discriminant analysis (BDA) algorithm, called multilinear biased discriminant analysis (MBDA), is first proposed. Then, we apply the MBDA and two-dimensional BDA (2DBDA) algorithms, as the dimen...
متن کاملA Novel Tensor Perceptual Color Framework based Facial Expression Recognition
The Robustness of Facial Expression Recognition (FER) is based on information contained in color facial images. The Tensor Perceptual Color Framework (TPCF) enables multilinear image analysis in different color spaces. This demonstrates that the color components provide additional information for robust FER. By using this framework color components RGB, YCbCr, CIELab or CIELuv space of color im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 100 شماره
صفحات -
تاریخ انتشار 2017